国产999免费视频|亚洲欧美激情综合首页|动漫人妻h无码中文字幕|国产精品欧美日韩视频一区|美女精品人妻视频一区二区|中文亲近交尾bd在线播放|色五月丁香亚洲高清无码国产|久久一区国产男人操女人的视频

position: EnglishChannel > Innovation China > Article

China’s Breakthrough in Propylene Production

Source: Science and Technology Daily | 2024-07-19 16:56:34 | Author: Science and Technology Daily

By YIN Wei & CHEN Xi


Defective TiOx overlayers catalyze propane dehydrogenation promoted by base metals. (COURTESY PHOTO)

Scientists from Tianjin University in China have developed a cost-effective and environment-friendly catalyst for the production of propylene, one of the highest produced basic chemicals globally, used to manufacture plastics, rubber, fibers, and pharmaceuticals.

The groundbreaking achievement boosts the development of sustainable catalysts for low-carbon olefin production technologies and is strategically important for the global petrochemical industry chains. In 2023, China's propylene production exceeded 60 million tons, accounting for approximately one-third of the global output, with its total value surpassing 600 billion RMB. 

The finding is the cover story of the July 19th issue of Science.

Among the various propylene production technologies, propane dehydrogenation (PDH) is preferred due to its high economic efficiency and reduced dependence on petroleum. However, traditional PDH catalysts rely heavily on expensive platinum or the highly toxic chromium oxide, making the process costly and detrimental to the environment. The quest for a more efficient, cheaper, and greener next-generation propylene catalyst has thus become a global focal point in chemical research.

The Energy and Catalysis Adventure Team at Tianjin University hypothesized that inexpensive and environmentally friendly oxides could be used to interact electronically with metals, thereby enhancing the catalytic process. Based on this hypothesis, they developed a titanium oxide-nickel composite catalyst. Titanium is abundantly available, with China being one of the top source countries. Nickel is also plentiful globally.

The titanium oxide overlayers were tailored to completely coat an entire nickel nanoparticle through strong metal-support interaction at elevated temperatures under hydrogen reduction, which remained intact under propane dehydrogenation reaction conditions. The result was fine-tuned electronic transfer between titanium oxide and nickel, enhancing catalytic activity while suppressing side reactions such as cracking and carbon deposition.

This new catalyst demonstrates exceptional propylene selectivity and stability, outperforming international counterparts. It can reduce costs by 30-50 percent while ensuring non-toxic and low-energy consumption during preparation and use.

This innovation also provides feedback for the next generation of efficient, cost-effective, and sustainable propylene catalysts. 

Editor: 龍云

Top News

Space Cooperation Consolidates Sino-French Friendship

On June 22, the Sino-French satellite Space Variable Objects Monitor (SVOM) was successfully launched. Earlier, on May 3, China's Chang'e-6 lunar probe carried France's Detection of Outgassing RadoN to the moon, marking the first collaboration between the two countries in lunar exploration and France's debut in a lunar landing project. This year also celebrates the 60th anniversary of diplomatic relations between China and France, highlighting their longstanding cooperation in space.

Tech Innovations' Role in Building a Leading Sports Nation

Pushing the development of tech innovation is needed to achieve China's goal of becoming a leading sports nation by 2035, as well as becoming a modernized country.